

# Antenne résonateur BIE à faisceau contrôlable

#### <u>Olivier Roncière, Ronan Sauleau, Kouroch Mahdjoub</u>

#### Olivier.ronciere@univ-rennes1.fr

Institut d'Electronique & de Télécommunications de Rennes (IETR)







### I. Introduction

- Généralités
- Notion de diagramme de rayonnement et de directivité

Sommaire

UMR

CN !

### II. Antennes à Bande Interdite Electromagnétique

• Présentation et principe de fonctionnement

### III. Application en bande *Ku*

- Modèle 2D d'antenne à faisceau contrôlable
- Performances d'une antenne réelle

### **IV. Conclusion**

### **Rôle d'une antenne dans un système de communication**

I.Introduction

Généralités Rayonnement





### **Ou sont les antennes ?**

I.Introduction

- Antennes classiques:
  - Antennes télé ou radio
  - Téléphone portable
- Recherches aujourd'hui:
  - Communications satellites
  - Transport (radar automobile)
  - Réseaux locaux (communications intra-bâtiments)



Généralités

### **Diagramme de rayonnement**

I.Introduction

•L'antenne isotrope, c'est-à-dire rayonnant de la même façon dans toutes les directions, est un modèle théorique irréalisable dans la pratique.

•En réalité, l'énergie rayonnée par une antenne est répartie inégalement dans l'espace, certaines directions sont privilégiées : ce sont les lobes de rayonnement.





CN

UMR

Ravonnement

## VELECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE REMNES

### **Diagramme de rayonnement**

Deux plans d'observation orthogonaux:

•Plan E (plan contenant le vecteur  $\vec{E}$ )

•Plan H (plan contenant le vecteur  $\vec{H}$ )



Ravonnement



### **Diagramme de rayonnement**

I.Introduction





Coupes du diagramme 3D — Plan E — Plan H

- Rayonnement – Directivit



UMR

CVL-

### Directivité d'une antenne

Introduction - Rayonnement - Directivit

•Mesure la quantité d'énergie rayonnée dans une direction de l'espace  $U(\theta, \Phi)$  par rapport à l'énergie totale rayonnée.



### Directivité d'une antenne

Introduction - Rayonnement - Directivit

•Mesure la quantité d'énergie rayonnée dans une direction de l'espace  $U(\theta, \Phi)$  par rapport à l'énergie totale rayonnée.





### I. Introduction

- Généralités
- Notion de diagramme de rayonnement et de directivité

Sommaire

- II. Antennes à Bande Interdite Electromagnétique (BIE)
  - Présentation et principe de fonctionnement

### III. Application en bande Ku

- Modèle 2D d'antenne à faisceau contrôlable
- Performances d'une antenne réelle
- **IV. Conclusion**



### Les antennes à Bande Interdite Electromagnétique (BIE)

#### Antennes directives

(IRCOM, Limoges)



### Pourquoi des antennes directives

- Communications point à point



- Communications à longue distance





### Les antennes à Bande Interdite Electromagnétique (BIE)

### Antennes reconfigurables

(IETR, Rennes)



Couverture zone (stations de base)  $\bigcirc$ BTS

UMR



## Motivations et objectifs de l'étude

II.Les Antennes BIE

#### Radar Anti-collision

Passage d'un faisceau à ouverture large à un faisceau à ouverture étroite





### Géométrie des antennes BIE







### **Fonctionnement des antennes BIE**

L'antenne BIE étale le champ à sa surface pour obtenir une forte directivité.





### **Fonctionnement des antennes BIE**

L'antenne BIE étale le champ à sa surface pour obtenir une forte directivité.





### ILLES Antennes BIE

### Antenne BIE à directivité variable

L'antenne BIE étale le champ à sa surface pour obtenir une forte directivité.



#### Directivité



#### Taille de l'ouverture rayonnante





### I. Introduction

- Généralités
- Notion de diagramme de rayonnement et de directivité

Sommaire

- II. Antennes à Bande Interdite Electromagnétique
  - Présentation et principe de fonctionnement

### III. Application en bande *Ku*

- Modèle 2D d'antenne à faisceau contôlable
- Performances d'une antenne réelle

### **IV. Conclusion**





#### Géométrie de l'antenne



- •Miroirs semi-réfléchissants: pistes métalliques
- •Source: Ligne de courant infinie
- •Grille active: pistes métalliques (période lâche)
- •Ouverture rayonnante de taille variable Directivité variabl





#### Modèle 2D de l'antenne

Diagrammes de rayonnement

### Cartographies du champ E (|E|)





### Géométrie de l'antenne réelle







### **Résultats FDTD**

#### Cartographies du champ E (|E|)



$$L=2\times\lambda_{o}$$

$$L=4\times\lambda_{o}$$





#### Augmentation de l'ouverture rayonnante avec L.





### **Résultats FDTD**

Diagramme de rayonnement (Plan H)



| Ouverture<br>L (λ) | θ(-3dB) | Niveau<br>des lobes |
|--------------------|---------|---------------------|
| 2                  | 32°     | -16                 |
| 4                  | 18°     | -24                 |
| 12                 | 9°      | -25                 |

Rq: dans le pan E, des lobes secondaires importants apparaissent



Le plan H est très bon



### **Résultats FDTD**

#### Variation de directivité



Variation maximale de directivit à f=16.05GHz:

 $\Delta D_0 = 13.5 dB.$ 





V. Conclusion

Faisabilité d'une antenne BIE à directivité variable

Insertion d'une grille active à l'intérieur de la cavité

Les simulations FDTD montrent une variation de directivité de 13.5dB

Une maquette est en cours de réalisation





# Antenne résonateur BIE à faisceau contrôlable

#### <u>Olivier Roncière, Ronan Sauleau, Kouroch Mahdjoub</u>

#### Olivier.ronciere@univ-rennes1.fr

Institut d'Electronique & de Télécommunications de Rennes (IETR)





