
 

Abstract— Research in quantum computation is looking for
the consequences of having information encoding, processing
and communication exploit the laws of quantum physics, i.e. the
laws which govern the ultimate knowledge that we have, today, of
the foreign world of elementary particles, as described by
quantum mechanics. This paper starts with a short survey of the
principles which underlie quantum computing, and of some of the
major breakthroughs brought by the first ten to fifteen years of
research in this domain; quantum algorithms and quantum
teleportation are very biefly presented. The next sections are
devoted to one among the many directions of current research in
the quantum computation paradigm, namely quantum
programming languages and their semantics. A few other hot
topics and open problems in quantum information processing
and communication are mentionned in few words in the
concluding remarks, the most difficult of them being the physical
implementation of a quantum computer. The interested reader will
find a list of useful references at the end of the paper.

Keywords— Quantum information processing, quantum
algorithms, quantum programming languages.

I. INTRODUCTION

NFORMATION is physical: the laws which govern its
encoding, processing and communication are bound by

those of its unavoidably physical incarnation. In today’s
informatics, information obeys the laws of Newton’s and
Maxwell’s classical physics: this statement holds all the way
from commercial computers down to (up to?) their most
abstracted models like Turing machines and lambda-calculus.
Today’s computation is classical.
Quantum information processing and communication was
born some twenty years ago, as a child of two major scientific
achievements of the 20th century, namely quantum physics and
information sciences. The driving force of research in quantum
computation is that of looking for the consequences of having
information encoding, processing and communication based
upon the laws of quantum physics, i.e. the ultimate
knowledge that we have, today, of the foreign world of
elementary particles, as described by quantum mechanics. The
principles and the major results of quantum information
processing are very briefly introduced in this paper. For a
more detailed, but still concise and gentle introduction, see
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[24]. A pedagogical and rather thorough textbook on quantum
computing is [21]. For a dense and theoretically profound
presentation, the reader is referred to [16].

II. FROM PHYSICS TO COMPUTING

Quantum mechanics, which is the mathematical
formulation of the laws of quantum physics, relies on four
postulates: (i) the state of a quantum system (i.e. a particle, or
a collection of particles) is a unit element of a Hilbert space,
that is a vector of norm 1 in a d-dimensional complex vector
space; (ii) the evolution of the state of a closed quantum
system (i.e. not interacting with its -classical- environment) is
deterministic, linear, reversible and characterized by a unitary
operator, that is by a dxd unitary matrix applied to the state
vector; (iii) the measurement of a quantum system (i.e. the
observation of a quantum system by its -classical-
environment) irreversibly modifies the state of the system by
performing a projection of the state vector onto a
probabilistically chosen subspace of the Hilbert space, with
renormalization of the resulting vector, and returns a value
(e.g. an integer) to the classical world, which just tells which
subspace was chosen; and (iv) the state space of a quantum
system composed of several quantum subsystems is the tensor
product of the state spaces of its components (given two
vector spaces P  and Q  of dimensions p  and q  respectively,
their tensor product is a vector space of dimension pxq).

The question is then: how to take advantage of these –rather
strange- postulates to the benefits of computation? The most
widely developed approach to quantum computation exploits
all four postulates in a straightforward manner. The elementary
physical carrier of information is a qubit (quantum bit), i.e. a
quantum system (electron, photon, ion, ...) with a 2-
dimensional state space (postulate i); the state of a n-qubit
register lives in a 2n-dimensional Hilbert space, the tensor
product of n 2-dimensional Hilbert spaces (postulate iv). Then,
by imitating in the quantum world the most traditional
organization of classical computation, quantum computations
are considered as comprising three steps in sequence: first,
preparation of the initial state of a quantum register (postulate
iii can be used for that, possibly with postulate ii); second,
computation, by means of  deterministic unitary
transformations of the register state (postulate ii); and third,
output of a result by probabilistic measurement of all or part
of the register (postulate iii).
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III. QUANTUM INGREDIENTS FOR INFORMATION PROCESSING

These postulates and their consequences can be interpreted
from a more informational and computational point of view,
thus providing the elementary quantum ingredients which are
at the basis of quantum algorithm design.

A. Superposition

At any given moment, the state of quantum register of n
qubits is a vector in a 2n-dimensional complex vector space,
i.e. a vector with at most 2n non zero complex components,
one for each of the 2n different values on n bits: the basis of
this vector space comprises the 2n vectors |i>, for i in {0,1}n

(|i> is Dirac’s notation for vectors denoting quantum states).
This fact is exploited computationally by considering that this
register can actually contain a superposition of all the 2n

different values on n bits, whereas a classical register of n bits
may contain only one of these values at any given moment.

B. Quantum Parallelism and Deterministic Computation

Let f be a function from {0,1}n to {0,1}m and x  be a
quantum register of n qubits initialized in a superposition of
all values in {0,1}n (this initialization can be done in one step
by a very simple operation). Then, computing f(x) is achieved
by a deterministic, linear and unitary operation applied to the
state of x: by linearity, a single application of this operation
distributes over all 2n dimensions and produces all 2n values of
f in a single computation step. Performing this operation for
any, possibly non linear f while obeying the linearity and
unitarity laws of the quantum world, requires a register of n+m
qubits formed of the register x, augmented with a register y of
m qubits. Initialy, y is in any arbitray state |s> on m qubits:
before the computation of f, the larger register of n+m qubits
contains a superposition of all pairs |i,s> for i in {0,1}n. After
the computation of f, it contains a superposition of all pairs
|i, sf(i)> for i in {0,1}n, where  is bitwise addition modulo
2. It is easy to verify that, for any f , this operation on a
register of n+m qubits is unitary (it is in fact its own inverse).
In many cases, it will be applied with s=0, which results in a
superposition of all simpler pairs |i, f(i)> for i in {0,1}n.

C. Probabilistic Measurement and Output of a Result

After f has been computed, all its values f(i), for i in {0,1}n,
are superposed in the y part (m qubits) of the register of n+m
qubits, each of these values facing (in the pair |i,f(i)>) their
corresponding i which is still stored in the unchanged
superposition contained in the x part (n qubits) of that register.
Observing the contents of y will return only one value, j,
among the possible values of f. This value is chosen with a
probability which depends on f since, e.g. if f(i)=j for more
than one values of i, the probability of obtaining j as a result
will be higher than that of obtaining k if f(i)=k for only one
value of i (and the probability of obtaining l if there is no i
such that f(i)=l will of course be 0). This measurement also
causes the superposition in y to be projected onto the 1-
dimensional subspace corresponding to the basis state |j>, i.e.
the state of the y part collapses to |j>, which implies that all

other values of f which were previously superposed in y are
irreversibly lost.

D. Interference

Using appropriate unitary operations, the results of the 2n

parallel computations of f over its domain of definition can be
made to interfere with each other. Substractive interference will
lower the probability of observing some of these value in y,
whereas additive interference will increase the probability of
observing other values and bring it closer to 1. Because of
probabilistic measurement, a major aim of the organization
and principles of quantum algorithms will be to assemble the
unitary operations for a given computation in such a way that,
when a final measurement is applied, a relevant result has a
high probability to be obtained. The whole game of quantum
algorithmics is precisely to assemble a minimal number of
well chosen unitary operations (the quantum algorithm) so that
a measurement of the final state will have probablity as close
to 1 as possible to produce a correct result.

E. Entangled States

Measuring y after the computation of f is in fact measuring
only m qubits (the y part) among the n+m qubits of a register.
The state of this larger register is a superposition of all pairs
|i,f(i)> for i in {0,1}n (e.g., in this superposition, there is no
pair like |2,f(3)>): this superposition is not a free cross-product
of the domain {0,1}n of f by its image in {0,1}m, i.e. there is
a strong correlation between the contents of the x and y parts of
the register. As a consequence, if measuring the y part returns a
value j, with the state of that part collapsing to the basis state
|j>, the state of the larger register will itself collapse to a
superposition of all remaining pairs |i,j> such that f(i)=j. This
means that, in addition to producing a value j , the
measurement of the y part also causes the state of the x part to
collapse to a superposition of all elements of the f -1(j) subset
of the domain of f. This correlation between the x and y parts
of the register is called entanglement: in quantum physics, the
state of a system composed of r sub-systems is not, in
general, simply reducible to an r-tuple of the states of the
components of that system. Entanglement has no equivalent in
classical physics and it constitutes the most powerful resource
for quantum information processing and communication.

F. No-Cloning

A direct consequence of the linearity of all operations that
can be applied to quantum states (a two line trivial proof
shows it) is that the state of a qubit a (this state is in general
an arbitrary superposition, i.e. a vector made of a linear
combination of the two basis state vectors |0> and |1>), cannot
be duplicated and made the state of another qubit b, unless the
state of a  is simply either |0> or |1> (i.e. not an arbitrary
superposition). This is true of the state of all quantum
systems, including of course registers of qubits used during a
quantum computation. In programming terms, this means that
the “value” (the  state) of a quantum variable cannot be copied
into another quantum variable.

These basic quantum ingredients and their peculiarities will
of course have far reaching consequences, as soon as



algorithm, programming languages and semantic frameworks
incorporate and make use of quantum resources.

IV. QUANTUM ALGORITHMS

Richard Feynman launched in 1982 [10] the idea that
computation based upon quantum physics would be
exponentially more efficient than based upon classical physics.
Then, after the pioneering insight of David Deutsch in the mid
eighties [8], who showed, by means of a quantum Turing
machine, that quantum computing could indeed not, in
general, be simulated in polynomial time by classical
computing, it was ten years before the potential power of
quantum computing was demonstrated on actual
computational problems.

The first major breakthrough was by Peter Shor [27]: in
1994, he published a quantum algorithm operating in
polynomial time (O(log3N )) for factoring an integer N,
whereas the best classical algorithm is exponential. Shor’s
algorithm relies on a known reduction of the problem of
factoring to that of finding the order of a group, or the period
of a function: then, since order finding can be achieved by a
Fourier Transform, the key of Shor’s algorithm is a Quantum
Fourier Transform, which is indeed exponentially more
efficient than classical FFT (Fast Fourier Transform), thanks
to quantum parallelism, entanglement and tensor product. The
exponential drop of complexity brought by Shor’s algorithm
has dramatic consequences in classical cryptography, e.g.
RSA, where the security precisely relies upon the difficulty of
factoring large integers. Once a running quantum computer is
available, most currently used systems for secure
communications are breakable in a few seconds.

Two years later, in 1996, Lov Grover [13] published a
quantum algorithm for searching an unordered database of size
N, which achieves a quadratic acceleration (it operates in
O(N1/2)) when compared with classical algorithms for the same
problem (in O(N)). Grover’s algorithm relies upon a very
subtle use of interference, now known as amplitude
amplification, which performs a stepwise increase of the
probability of measuring a relevant item in the database, and
which brings this probability very close to 1 after N1/2 steps.
Although less impressive than the exponential drop in
complexity of Shor’s algorithm, the quadratic drop of
complexity of Grover’s algorithm has a much wider range of
applications, namely in information retrievial.

Since then, these results have been generalized and extended
to related classes of problems. Shor’s algorithm solves an
instance of the hidden subgroup problem [19] for abelian
groups and a few extensions to non-abelian cases have been
designed. In addition to Quantum Fourier Transform, order
finding and amplitude amplification, other candidates to the
status of higher level building blocks for quantum
algorithmics have emerged, such as quantum random walks on
graphs [15]. Principles for distributed quantum computing
have also been studied and successfully applied to a few
classes of problems with, in some cases, an exponential drop
in communication complexity. Very recently, on the basis of
amplitude amplification, quadratic and other quantum

speedups have been found for several problems on graphs,
such as connectivity, minimum spanning tree and single
source shortest paths [9].

V. TELEPORTATION

Another major result, by Charles Bennet and others in 1993
[3], was the design of theoretical principles leading to a
quantum teleportation protocol, which takes advantage of
entanglement and of probabilistic measurement: the state of a
quantum system a (e.g. a qubit) localized at A’s place can be
assigned, after having been measured, thus destroyed, to
another quantum system b (e.g. another qubit), localized at
B’s place, without the state of a being known neither by A nor
by B, and without neither a  nor any other quantum system
carrying the state of a being moved along a trajectory between
A  and B . It is important to notice that this is not in
contradiction with no-cloning: there is still only one instance
of the teleported state, whereas cloning would mean that there
coexist one original and one copy.

Teleportation also has been generalized. The measurement
used in its original formulation was such that the state
eventually obtained for b was the same as the state initially
held by a (up to a correcting operation which still had to be
applied, depending on the probabilistic outcome of that
measurement). By changing the way the measurement is done
(in fact, by appropriately rotating the basis upon which the
measurement of a will project the state of a ), it has been
found that the state teleported to b could be not the state
initially held by a, but that state to which a rotation, i.e. a
unitary operation has been applied. In other words,
entanglement and measurement, i.e. the resources needed by
teleportation, can be used to simulate computations by unitary
tranformations. This has given rise to a whole new direction
of research in quantum computation, namely measurement-
based quantum computation [14,18,23].

VI. QUANTUM AND CLASSICAL

There is an implicit, but obvious and ever present invariant
in all these different ways of organizing quantum
computations and quantum algorithms. Quantum
computations operate in the quantum world, which is a
foreign and unknowable world. No one in the classical world
will ever know what the superposition state of an arbitrary
qubit is, the only information one can get is 0 or 1, through
measurement, i.e. the classical outcome of a probabilistic
projection of the qubit state vector onto basis vectors |0> or
|1>: if one gets 0, the only actual information which is
provided about the state before measurement is that it was not
|1>, because |0> and |1> are orthogonal vectors. Then, for the
results of quantum computations to be useful in any way,
there is an intrinsic necessity of cooperation and
communication controlled by the classical world. All quantum
algorithms, either based upon unitary transformations or upon
measurements, if they are of any relevance, eventually end up
in a final quantum state which hides, among its superposed
basic states, a desired result. Such a result is asked for upon
request by the classical world, which decides at that point to



perform a measurement on part or all of the quantum register
used by the computation. But measurement is probabilistic:
its outcome may be a desired result, but it may well be
something else. For example, Grover’s algorithm ends up in a
state where desired results have a probability very lose to 1 to
be obtained, but other, unwanted results may also come out
from the final measurement, although with a much lower
probability.

The whole game of quantum algorithmics is thus to
massage the state of the quantum register so that, in the end,
desired results have a high probability to be obtained, while
doing that at the minimum possible cost, i.e. minimal
number of operations applied (time) and of qubits used
(space). This is achieved through interferences (by means of
appropriate unitary operations), through the establishment of
entangled states and through measurements in appropriate
bases. But this is not the end: once a measurement outcome is
obtained by the classical world, it must be checked, by the
classical world, for its validity. If the result satisfies the
required conditions to be correct, termination is decided by the
classical world. If it does not, the classical world decides to
start the quantum part of the computation all over. For
example, in the case of Grover’s algorithm, if the element of
the database produced by the measurement is not correct, the
whole quantum search by amplitude amplification is started
again by the classical world.

In general, algorithms will not contain one, but several
quantum parts embedded within classical control structures
like conditions, iterations, recursions. Measurement is not the
only channel through which the classical and quantum worlds
interact, there is also the initialization of quantum registers to
a state chosen by the classical world (notice that such
initializations can only be to one among the basis states, since
they are the only quantum states which correspond, one to
one, to values expressible by the classical world). A quantum
part of an algorithm may also, under the control of the
classical world, send one of its qubits to another quantum
part. Notice that the physical carrier of the qubit must be sent,
not its state, because of no-cloning. This quantum to quantum
communication is especially useful for quantum cryptographic
communication protocols, a family of distributed quantum
algorithms of high relevance, in the very near future, among
the commercial applications of quantum information
processing.

This means that not only the peculiarities of the basic
quantum ingredients for computing have to be taken into
account in the design of languages for the formal description
of quantum algorithms and quantum protocols, but also the
necessity of embedding quantum computations within
classical computations, of having both worlds communicate
and cooperate, of having classical and quantum parts be
arbitrarily intermixed, under the control of the classical side,
within the same program.

VII. QUANTUM PROGRAMMING

While quantum computing is in its infancy, quantum
programming is still in embryonic state. Quantum computing

is on its way to becoming an established discipline within
computer science, much like, in a symmetric and very
promising manner, quantum information theory is becoming a
part of quantum physics. Since the recent birth of quantum
computing, the most important efforts have been invested in
the search for new quantum algorithms that would show
evidence of significant drops in complexity compared with
classical algorithms. Obtaining new and convincing results in
this area is clearly a crucial issue for making progress in
quantum computing. This research has been, as could be
expected, largely focusing on complexity related questions,
and relying on approaches and techniques provided by
complexity theory.

However, the much longer experience from classical
computer science tells that the study of complexity issues is
not the only source of inspiration toward the creation, design
and analysis of new algorithms. There are other roads, which
run across the lands of language design and semantics. A few
projects in this area have recently started, following these
roads. Three quantum programming language styles are under
study: imperative, parallel and distributed, and functional.
This naturally opens new and challenging research issues in
the domain of semantic frameworks (operational, denotational,
axiomatic), where the peculiarities of quantum resources have
to be dealt with in a formal, mathematical and consistent
fashion. This research, in turn, is expected to provide fresh
insights into the properties of the quantum world itself.

The sequential and imperative programming paradigm,
upon which all major quantum algorithmic breakthroughs
have relied, is still widely accepted as “the” way in which
quantum + classical computations are organized and should be
designed. However, before any language following that style
was designed, and even today, the quantum parts of
algorithms are mostly described by drawing pictures of
quantum gate networks, which are to quantum computing
what logical gate circuits are to classical computing. This is of
course very cumbersome and far from useful for understanding
and proving properties of programs. This is why some
imperative languages for quantum + classical programming
have been design first.

The most representative quantum imperative programming
language is QCL (Quantum Computing Language), a C
flavoured language designed by B. Ömer at the University of
Vienna [22]. Another one, qGCL (Quantum Guarded
Command Language) was due to P. Zuliani at Oxford
University [30], with the interesting design guideline of
allowing the construction by refinement of proved correct
programs.

Functional programming offers a higher level of abstraction
than most other classical programming paradigms, especially
than the imperative paradigm. Furthermore, it is certainly one
of the most fruitful means of expression for inventing and
studying algorithms, which is of prime importance in the case
of quantum computing. A natural way to try and understand
precisely how this programming style can be transposed to
quantum computing is to study quantum versions of lambda-
calculus.



This is being done, among others, by A. Van Tonder at
Brown University [28]. His approach puts forward the fact that
there is a need for new semantic bases in order to
accommodate disturbing peculiarities of the quantum world. A
striking example are the consequences of no-cloning. In
quantum programs, there are quantum variables, i.e. variables
storing quantum states. However, since it is impossible to
duplicate the state of a qubit, it is impossible to copy the
value of a quantum variable. This has far reaching
consequences, e.g., in lambda-calculus, an impossibility to
stay with classical beta-reduction for representing function
application. Van Tonder [29] and J.Y. Girard [12] are
suggesting that linear logic may be the way out of this
specifically quantum issue.

On the functional side, there is also QPL (a Quantum
Programming Language), designed by P. Selinger at the
University of Ottawa [26]. QPL is a simple quantum
programming language with high-level features such as loops,
recursive procedures, and structured data types. The language
is functional in nature, statically typed, and it has an
interesting denotational semantics in terms of complete partial
orders of superoperators (superoperators are a generalization of
quantum operations). All of these authors are still fighting
toward a satisfactory consistent integration of all quantum
peculiarities, i.e. not only no-cloning, which naturally comes
as their first major concern, but also probabilistic
measurement, the necessary presence of both quantum and
classical data and operations, etc.

The third style, process calculi, are an abstraction of
communicating and cooperating computations which take
place during the execution of parallel and distributed
programs. They form a natural basis for rigorous and high
level expression of several key aspects of quantum information
processing: measurement, cooperation between quantum and
classical parts of a computation, multi-party quantum
computation, description and use of teleportation and of its
generalizations, description and analysis of quantum
communication and cryptographic protocols. Representatives
of this approach are CQP (Communicating Quantum
Processes) , which is being designed by S. Gay and R.
Nagarayan at the Universities of Warwick and Glasgow [11],
and QPAlg (Quantum Process Algebra), designed by M.
Lalire and Ph. Jorrand at the University of Grenoble [17].
Both CQP and QPAlg have formally defined operational
semantics, in the Plotkin’s inference rules style, which include
a treatment of probabilistic transitions due to the measurement
postulate of quantum mechanics. All of this, of course, is still
ongoing research

VIII. ISSUES IN SEMANTICS

All the language designs for quantum programming are still
at the stage of promising work in progress. The core issues
clearly remain at the semantics level, because of the many
non-classical properties of the quantum world. No-cloning,
entanglement, probabilistic measurement, mixed states (a
more abstract view of quantum states, for representing
probabilistic distributions over pure states), together with the

necessary presence of both worlds, classical and quantum,
within a same program, call for further in depth studies toward
new bases for adequate semantic frameworks.

Operational semantics (i.e. a formal description of how a
quantum + classical program operates) is the easiest part,
although probabilities, no-cloning and entanglement already
require a definitely quantumized treatment. For example,
leaving the scope of a quantum variable is not as easy as
leaving the scope of a classical variable, since the state of the
former may be entangled with the state of more global
variables. Several of the languages mentionned previously
have their semantics defined in the operational style. But,
even in this rather naïve approach to semantics, much remains
to be done, like, in the process calculi approach, the definition
of an equivalence among processes. This would not only
provide a more satisfying and abstract semantics, but also
allow a rigorous and formal approach to a number challenging
questions in quantum computing. For example, it is known
that quantum computations described by unitary
transformations can be simulated by using measurements only
[14,18,23], and that quantum computation by measurements
is a way to get around decoherence, which is the major
obstacle on the way to the physical implementation of a
quantum computer (see the comments in the concluding
remarks). Then, it would be very useful to make sure, upon
well founded formal bases, that a computation specified by
means of unitary transformations is indeed correctly
implemented by means of measurements.

Axiomatic semantics (what does a program do? How to
reason about it? How to analyze its properties, its behaviour?)
is a very tricky part. Defining quantum versions of Hoare’s
logic or Dijkstra’s weakest precondition would indeed provide
logical means for reasoning on quantum + classical programs
and protocols and constitute formal bases for developing and
analyzing such systems. Some attempts toward a dynamic
quantum logic, based on the logical study of quantum
mechanics initiated in the thirties by Birkhoff and von
Neumann [4] have already been made, for example by Brunet
and Jorrand [5], but such approaches rely upon the use of
orthomodular logic, which is extremely uneasy to manipulate.
Of much relevance, and in the same direction, is the recent
work of D’Hondt and Panangaden on quantum weakest
preconditions [7], which establishes a semantic universe where
programs written in QPL [26] can be interpreted in a very
elegant manner.

Another long-term goal is the definition of a compositional
denotational semantics which would accommodate quantum as
well as classical data and operations, and provide an answer to
the question: what is a quantum + classical program, which
mathematical object does it stand for? Working toward this
objective has been attempted by P. Selinger with QPL,
although there are still major difficulties with second order
functions. Recent results on categorical semantics for quantum
information processing by Abramsky and Coecke [1,2], and
other different approaches like the the work of van Tonder [29]
and the interesting manuscript of J. Y. Girard [12] on the
relations between quantum computing and linear logic, are



also worth considering for further research in those directions.
In fact, there are still a great number of wide open issues in

the domain of languages for quantum programming and of
their semantics. For a compilation of recent results and an
overview of significant ongoing research on all these topics,
the interested reader  is referred to [25].

IX. CONCLUDING REMARKS

The preceeding sections provide a very partial and biaised
survey of the current status of research in the quantum
information processing and communication paradigm. There
are many other hot topics: quantum algorithms and quantum
complexity, of course, but also distributed quantum
computation and quantum communication complexity,
quantum cryptography and quantum secret sharing, quantum
information theory and quantum communication channels,
understanding and characterizing entangled quantum states,
measurement based quantum computation and other non
standard principles for quantum information processing
(adiabatic quantum computation, topological quantum
computation), formal models, abstract machines, languages
and machine architectures for quantum computing, and, last
but not least, physical implementation of a quantum
computing device.

This is currently viewed as the most difficult issue.
Physicists are still looking for a way to inscribe the qubit in
some suitable material substrate. Several avenues are being
explored, among them nuclear magnetic resonance (NMR),
trapped ions, trapped neutral atoms, optics (photon=qubit),
electronic spins, Josephson’s junctions, and others. Criterias
for a suitable qubit implementation have been agreed upon:
qubits must be initialisable in some standard state (e.g. |0>), a
set of basic unitary operations and measurements (quantum
instruction set) must be applicable and provide universality,
the technology must be scalable (i.e. allow a significant
number of qubits to co-exist and be usable within the same
architecture) and, probably the most crucial obstacle opposed
by the quantum world, qubits must stay in a coherent state
(i.e. not entangled with their surrounding physical
environment) during a sufficiently long time, so that an
operation, possibly followed by error recovery, can be applied
correctly. This time is currently estimated at 104 times the
time needed for an elementary unitary operation. A recent
study [31] seems to indicate that some technologies are
doomed to fail (e.g. NMR is not scalable), whereas others are
rather promising (e.g. trapped ions and Josephson’s
junctions). In any case, the most optimistic physicists expect
a quantum computer of reasonable size not before 15 to 20
years from now.
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